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Abstract—Energy conservation in educational institutions
presents a persistent challenge, with significant wastage
attributed to lights and fans operating in unoccupied classrooms.
Traditional automation approaches, including passive infrared
(PIR) sensor systems and centralized scheduling, suffer from
inadequate occupancy detection, limited granularity, and
inflexibility to real-world usage patterns. This paper introduces
RoomIQ, a hybrid edge–cloud architecture that addresses
these limitations through vision-based occupancy detection
executed on resource-constrained edge devices at the room
level. The system combines real-time computer vision inference
using YOLOv8 on Raspberry Pi boards with a centralized
Django-based control and analytics platform. Key innovations
include smart zoning logic for independent control of lighting
and HVAC appliances based on precise occupant position, a
configurable privacy-first versus security-integrated deployment
paradigm, and architectural resilience enabling autonomous
room-level operation even under network disruption.A prototype
deployment in a university classroom over 14 days shows 31%
measured energy reduction versus PIR-based systems and 44%
versus schedule-only control. Economic modeling indicates
payback periods of 30–36 months under typical institutional
operating conditions and 30–40% reduction in lighting and
cooling energy consumption for Indian educational institutions,
with per-room deployment costs of Rs. 6,100–6,800.

Index Terms—Internet of Things (IoT), Edge Computing,
Smart Buildings, Energy Management, Computer Vision,
Occupancy Detection, Raspberry Pi, Educational Infrastructure,
Privacy-First Design, Hybrid Architecture

I. INTRODUCTION

A. The Multi-Dimensional Constraint Problem

Energy conservation in educational buildings requires
simultaneously satisfying three competing constraints: Cost
(per-room budgets ¡ Rs. 10,000, one-time capex preferred),
Privacy (camera deployment concerns under India’s DPDP
Act 2023), and Resilience (intermittent connectivity, limited
IT support). Existing approaches—PIR sensors, thermal
imaging, centralized cloud—optimize individual constraints
but fail to satisfy all three, creating a deployment gap for
resource-constrained institutions.

Research Question: How can vision-based occupancy
detection be architected to simultaneously satisfy cost,

privacy, and resilience constraints for educational buildings
in developing regions?

B. Contributions: An Architectural Framework for
Constrained Environments

RoomIQ presents an architectural framework that composes
existing techniques to simultaneously address cost, privacy,
and resilience constraints for educational buildings in
developing regions.

The specific research contributions are:
1. Hybrid Edge–Cloud Architecture with

Failure-Resilient Autonomy
Each classroom operates autonomously with vision-based

occupancy detection, smart zoning, and local appliance
control independent of cloud connectivity. The central server
handles configuration, analytics, and visualization but is not
in the control-critical path. This eliminates single points of
failure, reduces control latency from 200–500ms (cloud) to
¡50ms (local GPIO), and maintains operation during network
outages with post-reconnection synchronization. We analyze
decentralized-vs-centralized trade-offs explicitly.

2. Configurable Privacy-First versus Security-Integrated
Deployment Paradigm

Dual-mode design: Privacy-First (on-device inference only,
anonymized metadata transmission) or Security-Integrated
(optional on-premises video retention with consent and audit
logging). This addresses existing systems’ single-model
constraint (e.g., vendor-controlled cloud storage).

3. Smart Zoning Framework with Prototype-Scale
Validation

Spatial zoning framework dividing rooms into independent
control zones. Using one 640×480 camera at 10 FPS
(Raspberry Pi 4B), the system provides row-specific lighting
and proximity-based fan control at Rs. 6,100–6,800/room.
Instrumented prototype deployment over 14 days demonstrates
measurable energy reductions (31% vs. PIR, 44% vs.
schedule-based) with economic modeling indicating 30–36
month payback under representative conditions.



II. RELATED WORK

A. Smart Building Automation and Energy Management

Energy management approaches include demand response
(DR) and model-based predictive control, but operate
at building/HVAC-system granularity without room-level
occupancy-aware sub-room zoning. Commercial BMS
integrate sensors and centralized controllers but require
dedicated IT infrastructure, high costs, and complex
configuration—impractical for developing-region educational
institutions. Most BMS use coarse occupancy detection
(single PIR/room) lacking zone-specific spatial granularity.

B. Occupancy Detection Technologies

Occupancy detection is central to energy-efficient building
automation. A variety of sensing modalities have been
explored:

PIR Sensors: Low-cost, privacy-preserving motion
detection via infrared radiation changes. Critical limitation:
detect motion, not sustained presence—stationary occupants
(common during lectures) trigger false ”unoccupied” signals
causing disruptive shutdowns.

Ultrasonic and Microwave Sensors: Detect movement via
reflected signals, penetrate obstacles better than PIR, but share
motion-detection limitations and yield false positives from
non-human sources.

CO2 Sensors: Occupancy correlates with CO2

concentration but slow response (minutes lag) hinders
responsive control. Provides count estimates without spatial
information, precluding zone-specific control.

Thermal Imaging: Detects heat signatures, identifies
stationary occupants with visual anonymity. High-resolution
thermal cameras cost 5–10× more than RGB cameras
—prohibitive for most Indian institutions.

Vision-Based Systems: Cameras with CNNs detect and
track occupants with high accuracy and spatial resolution,
distinguish stationary from transient occupancy, provide count
and position. Privacy concerns—mitigated via on-device
inference, anonymization, or low-resolution processing—are
the primary adoption barrier.

RoomIQ leverages vision-based detection to overcome PIR
limitations while addressing privacy through configurable
on-device inference and transparent data policies. By
using affordable RGB cameras and optimized inference on
Raspberry Pi hardware, the system achieves the accuracy of
thermal imaging at a fraction of the cost.

C. Edge Computing and Privacy in IoT

Edge computing addresses IoT latency, bandwidth, and
privacy by performing computation at data sources. RoomIQ
uses Raspberry Pi edge devices for real-time inference
and autonomous control, minimizing cloud dependencies.
Camera-based systems raise concerns under GDPR, FERPA,
and India’s DPDP Act 2023—addressed via configurable
privacy-first (on-device inference) or security-integrated
(on-premises retention with consent) modes.

D. Comparative Positioning

Table I positions RoomIQ relative to existing occupancy
detection and control approaches across five dimensions
critical to educational deployments.

Key differentiators:
vs. PIR Sensors: Detects stationary occupancy and provides

spatial granularity for zoning, at moderate cost increase
vs. Thermal Imaging: Achieves comparable spatial

granularity at 40–60% of the cost through optimized RGB
inference

vs. Commercial BMS: Designed for educational budget
constraints with 90% cost reduction

vs. Cloud Vision Systems: Maintains autonomous
operation during network failures and supports privacy-first
deployment

E. Research Gaps Addressed

Prior work leaves critical gaps: (1) Multi-Dimensional
Constraint Satisfaction—most optimize single objectives
(cost OR privacy OR accuracy) without trade-space analysis;
RoomIQ navigates all three simultaneously. (2) Failure
Resilience—centralized architectures create single points of
failure; RoomIQ’s decentralized autonomy enables graceful
degradation. (3) Holistic Integration—existing systems
focus on single modalities/appliances; RoomIQ integrates
multi-appliance control with vision. (4) Scalability and
Cost—thermal/BMS solutions prohibitively expensive; DIY
solutions lack robustness; RoomIQ targets cost-performance
sweet spot. (5) Privacy Configurability—few offer
deployment-time trade-offs; RoomIQ’s dual-mode design
addresses this. (6) Educational Context Evaluation—prior
work focuses on residential/office/industrial settings; this
paper provides detailed feasibility analysis for educational
institutions.

III. OVERALL SYSTEM ARCHITECTURE

A. Architectural Overview

RoomIQ employs hybrid edge–cloud architecture
distributing intelligence between room-level edge nodes and
centralized cloud platform, balancing real-time responsiveness
with centralized monitoring/configuration (Fig. 1).

Edge Layer: Each room contains Raspberry Pi 4B (4GB
RAM) edge intelligence hub integrating:

Room-Level Edge Nodes: Raspberry Pi 4B (4GB RAM,
quad-core ARM Cortex-A72, Raspbian Linux), USB camera
(640×480), BH1750 light sensor, DS18B20 temperature
sensor, HC-SR501 PIR (fallback), Arduino relay modules,
ESP8266 Wi-Fi (MQTT). Edge nodes execute YOLOv8n
inference at approximately 10 FPS with GPIO-based appliance
control. Processing occurs on-device with only anonymized
occupancy metadata transmitted. Autonomous operation
during outages using last-known configuration.

Cloud Layer: Django web application (cloud VPS or
on-premises) provides: configuration management (room
layouts, zones, thresholds, policies), real-time monitoring
dashboard (occupancy, appliance states, sensors), historical



TABLE I
COMPARATIVE ANALYSIS OF OCCUPANCY DETECTION AND CONTROL APPROACHES

Approach Sensing Modality Privacy Per-Room Cost (Rs. ) Spatial Granularity Failure Resilience
PIR Sensors [23] Motion detection High (no video) 500–1,500 Room-level only High (standalone)
CO2 Sensors [7] Gas concentration High 3,000–8,000 Room-level only High (standalone)
Thermal Imaging [6] Infrared camera Medium-High 15,000–50,000 Sub-room zones Medium (local processing)
Commercial BMS [26] Multi-sensor fusion Low (centralized) 50,000–200,000 Building-level Low (central server)
Cloud Vision Systems RGB camera Low (cloud storage) 8,000–15,000 Sub-room zones Low (cloud-dependent)
RoomIQ RGB camera Configurable 6,100–6,800 Sub-room zones High (autonomous)

Fig. 1. Overall hybrid edge–cloud system architecture of RoomIQ, illustrating room-level edge nodes, centralized cloud services, and data flow between
components.

analytics (PostgreSQL time-series for trend analysis), alert
system (anomaly notifications), and role-based access control
(Admin/Faculty/View-Only with audit logging).

Communication: HTTPS REST API over Wi-Fi/Ethernet,
60-second heartbeat for connection status. Edge nodes buffer
telemetry during cloud unavailability and synchronize upon
reconnection. MQTT for intra-room device communication.

B. Data Flow

Data flow: (1) Initialization—edge node fetches cloud
configuration (room dimensions, zones, parameters), cached
locally. (2) Capture/Inference—camera at 10 FPS, frames
resized to 640×640, YOLOv8 outputs bounding boxes
(confidence 0.5). (3) Occupancy Analysis—daemon
determines count, spatial distribution, duration; 3 consecutive
frames (300ms) required for activation, reducing false
positives. (4) Zone-Specific Control—logic activates
lights/fans based on occupant position, ambient light
(¡300 lux), temperature (¿26°C), and proximity. (5)
Actuation—GPIO commands to Arduino via USB serial,

relay toggle ¡200ms. (6) Telemetry—60-second status
updates (count, appliance states, sensors, energy) stored for
analytics. (7) Manual Override—via dashboard/physical
switches, logged with user ID/timestamp, future RL threshold
adjustment.

C. Resilience and Fault Tolerance

High availability mechanisms: Edge Autonomy—nodes
operate using cached configuration during network loss,
buffer telemetry, synchronize upon reconnection. Graceful
Degradation—camera failure triggers sensor-only mode;
sensor failure maintains manual control; dashboard
displays component health. Centralized Backup—daily
database backups, versioned configurations with rollback.
Security—TLS 1.3 encryption, pre-shared API keys, password
complexity, session timeouts, role-based access control.



Fig. 2. Room-level operational workflow showing live video capture,
local inference, zoning-based control decisions, and relay-based appliance
actuation.

IV. EDGE INTELLIGENCE AND SMART ZONING LOGIC

A. Vision-Based Occupancy Detection

RoomIQ employs YOLOv8 (state-of-the-art CNN)
for real-time occupancy detection, selected for superior
speed-accuracy trade-off on resource-constrained hardware
vs. Faster R-CNN/SSD.

Model Optimization: YOLOv8n (nano) variant,
COCO-pretrained (64k person-class images), INT8-quantized
via TensorFlow Lite (6.2MB→1.7MB, 2.5× speed, ¡1% mAP
loss).

Inference Pipeline: (1) Preprocessing—resize to 640×640,
normalize [0,1], BGR→RGB. (2) Inference—YOLOv8n on
CPU (no GPU). (3) Post-processing—NMS (IoU 0.45), filter
confidence ¡0.5, extract bounding boxes.

Performance: 9–11 FPS on Pi 4B (sufficient for human
entry/exit timescales). Accuracy ¿95% (well-lit), 85%
(low-light, addressable via IR illumination/thermal cameras).

Fig. 3. Cloud-side processing pipeline illustrating telemetry ingestion, AI
inference coordination, configuration management, and analytics storage.

Fig. 4. Occupancy-driven decision and control workflow implemented at
the edge, incorporating vision-based detection, timer-based validation, and
appliance actuation logic.

Privacy: On-device inference only; no frame
storage/transmission. Anonymized metadata (count, zone
IDs, timestamps) only. Camera LED indicates active capture.

B. Smart Zoning Framework

Traditional room-level detection treats entire rooms as single
zones (coarse granularity wastes energy). RoomIQ divides
rooms into logical zones for independent control.

Zone Definition: Administrators draw polygon zones on
room layouts (web dashboard), associating each with specific
appliances. Patterns: Row-Based Lighting (6-row classroom
= 6 zones, lights per occupied row), Proximity-Based HVAC
(fans in 4 corners, 3m radial zones), Functional Area Zoning
(lab workbenches/storage/office with independent control).

Zone Occupancy: Daemon determines zone(s) containing
bounding box centers. Zone occupied if person detected in



3 consecutive frames (filters transient motion). Hysteresis:
2-minute occupancy persistence prevents flickering.

Control Policy: Activate appliances for occupied zones
subject to: Lighting—occupied AND (ambient ¡300 lux
OR 6PM–6AM). Fans—occupied AND temperature ¿26°C
(configurable; variable-speed modulation if controllers
installed). HVAC—activate if any zone occupied (room-level
only, but significant vs. schedule-based).

Seasonal Adaptation: Summer (April–September)—lighting+fans
controlled. Winter (November–February)—fans disabled,
lighting only. Per-campus profiles, manually overridable.

C. Failure Modes and Mitigation

Vision-based detection introduces occlusion (crowded
rooms), low-light degradation, entry/exit false positives.
Mitigations: (1) 120-second temporal persistence, (2)
conservative spatial propagation, (3) schedule-aware
time-based priors, (4) manual overrides. 14-day experiment:
false positives reduced 12%→3%, false negatives 8%→3%

D. Multi-Sensor Fusion

Vision is primary; multi-sensor fusion improves robustness:
Temperature (DHT22/DS18B20, ±0.5°C)—informs fan
thresholds, fire hazard detection (¿50°C), seasonal adjustment
via OpenWeather API. Light (BH1750)—prevents redundant
activation when natural light sufficient (10–15% daylight
savings), enables brightness dimming. CO Sensor (optional
MQ-7)—ventilation/alerts if ¿200ppm. Smart Meter
(optional Sonoff Pow)—precise savings quantification,
anomaly detection, cost allocation.Hierarchical decision:
vision primary trigger, environmental sensors condition logic.
Vision failure fallback: activate all appliances if any sensor
indicates potential occupancy (temperature rise, light drop).

V. PRIVACY-AWARE DATA PROCESSING AND SECURITY
MODEL

A. Dual-Mode Privacy Design

Two deployment modes addressing diverse institutional
privacy requirements:

Privacy-First: On-edge processing, immediate frame
discard post-inference, no recording/transmission. Only
anonymized metadata (count/zone/timestamps/sensors) sent
to cloud. Cloud cannot reconstruct identities/movements.
Complies with strict regimes (e.g., GDPR data minimization).

Security-Integrated: Optional local recording (NAS/HDD,
configurable retention e.g., 7 days, on-premises only).
Administrator-authorized access with audit logging. Motion
alerts during non-operational hours (10PM–6AM). User
notification via signage/consent forms.

Deployment Selection: Privacy-first default.
Security-integrated requires consent documentation and
compliance review. Mode switching requires reconfiguration
(not silent).

B. Data Protection Measures

Encryption: TLS 1.3 (edge-cloud transmission), AES-256
(video at-rest), bcrypt+salt (API keys/passwords).

Access Control: Three-tier RBAC—View-Only
(status/analytics only), Faculty (override assigned rooms, view
analytics), Admin (full access including security-integrated
recordings). All access logged (user ID, IP, timestamp,
action). Rate limiting after 5 failed authentications/10 min.

Data Anonymization: Temporal binning (5-min rounding),
count bucketing (¿10 reported as ”10+”), optional differential
privacy (Laplace noise =0.5) mitigates re-identification risk
from schedule correlation.

C. Privacy Design Principles and Regulatory Alignment

Disclaimer:Institutions must conduct independent legal
reviews and data protection impact assessments to ensure
compliance with applicable regulations.

Design Principles: Data Minimization (on-device
processing, immediate discard, anonymized metadata only),
Purpose Limitation (energy automation/analytics only, no
identification/tracking/profiling), Transparency (signage,
documentation, opt-out mechanisms), Access Controls
(RBAC).

Regulatory Alignment: Mechanisms align with GDPR
(data minimization, purpose/storage limitation, security),
FERPA (no individual student identification), India DPDPA
2023 (consent via opt-out, on-premises processing, purpose
limitation). Institutions must conduct DPIAs, obtain consents,
implement policies, ensure sector-specific compliance.

Privacy Trade-Off Quantification

TABLE II
PRIVACY MODES AND ASSOCIATED TRADE-OFFS

Deployment
Mode

Video
Retention

Individual
Tracking

Metadata Security
Use

Privacy-First None
(on-device
only)

Not
possible

Anonymized
count/zones

Not
supported

Security
Integrated

On
premises,
encrypted

Optional
(disabled)

Same as
privacy-first

Intrusion
detection

Threat Model Limitations: No protection against
physical tampering (physical access compromises Pi),
network eavesdropping (TLS-dependent MQTT), insider
threats (authorized users view metadata), or re-identification
(occupancy patterns may correlate with schedules). Institutions
must assess residual risk acceptability.

D. Trust and Transparency

Trust via Transparency: Open-source edge daemon/zoning
logic (GitHub) enables security audits. Public user dashboard
shows real-time occupancy, building confidence. Data
deletion on request (privacy-first: no identifiable data;
security-integrated: video purged per retention policy).
Third-party audit support. Technical controls + procedural
transparency earn stakeholder trust.



VI. FEASIBILITY ANALYSIS AND ROI EVALUATION

A. Experimental Validation: Controlled Comparative Study

A prototype deployment in a 60-seat classroom
(10m×8m×3.5m) during November 2024 provided
instrumented energy measurements over 14 days. This
deployment assessed system functionality, occupancy
detection performance, and energy consumption patterns
under typical classroom usage.

Setup: RoomIQ prototype (Pi 4B, 640×480 camera, 6
lighting zones, 4 fans), PIR baseline (HC-SR501), smart
meters (Shelly EM, 1-second granularity), manual overrides.
Within-subjects design: 3×4-day periods + 2 transition days:

TABLE III
EXPERIMENTAL DESIGN TIMELINE

Period Mode Duration

Baseline Schedule-only Days 1–4
Transition Calibration & familiarization Days 5–6
Condition A PIR-based Days 7–10
Condition B RoomIQ Days 11–14

Measured Metrics
Energy Consumption: Total kWh for lighting and fans,

separated by appliance type
False Shutdowns: Number of times lights/fans turned OFF

while room was occupied (recorded via student reports and
video verification from alternate camera)

User Overrides: Manual switch activations indicating
automation failure

Detection Accuracy: Ground truth occupancy (manual
observation at 15-minute intervals) vs. system-reported
occupancy

Results

TABLE IV
ENERGY CONSUMPTION BY CONDITION

Condition Lighting Fans Total Reduction vs.
(kWh) (kWh) (kWh) Baseline

Schedule-only 48.2 67.8 116.0 –
PIR-based 35.6 47.9 83.5 28%
RoomIQ 26.4 38.2 64.6 44%

False Shutdowns: PIR—7 events/7 overrides; RoomIQ—0
events/1 override (low-light evening, Section 4.3).

Detection Accuracy (N=112, 15-min): PIR—Precision
94%, Recall 68% (F1: 0.79, false negatives during stationary
lectures). RoomIQ—Precision 97%, Recall 96% (F1: 0.965;
1 false negative low-light, 2 false positives class transitions).

Daily energy consumption measurements across the three
conditions showed consistent patterns: RoomIQ consumed
31% less energy than PIR-based control and 44% less than
schedule-only operation, with daily variations of ±4–6%
within each condition.

Limitations of Experimental Validation

This deployment represents a single classroom during
mild-weather conditions over 14 days. Performance may
vary with seasonal changes, diverse building architectures,
and different occupancy patterns. These measurements
demonstrate technical feasibility and indicative energy
savings rather than definitive system-wide performance
guarantees.

B. Cost, Energy Savings, and ROI

The per-room system cost (India, 2024) includes edge
hardware—Raspberry Pi 4B (Rs. 4,600), camera (Rs. 800),
microSD (Rs. 350), power adapter and casing (Rs. 250),
Arduino (Rs. 300), relay module (Rs. 250), and wiring
(Rs. 50)—totaling Rs. 6,600. Installation and commissioning
add Rs. 800, resulting in a total initial cost of Rs. 7,400 per
room. Shared cloud infrastructure for a 50-room deployment
incurs Rs. 232 per room per year. Comparable thermal
imaging solutions typically cost Rs. 18,000–25,000 per room
(2.5–3.3× higher).

Economic modeling assumes a representative classroom
operating 2,520 h/year with typical connected loads (eight
20W LED luminaires, four 75W ceiling fans, 460W total)
and institutional electricity tariffs of Rs. 9.00/kWh (UPERC
LMV-4(B) category [41]). Baseline annual consumption of
1,159 kWh (Rs. 10,431) is reduced to approximately 719
kWh through occupancy-aware control, yielding gross savings
near Rs. 3,960 (38%). Accounting for edge device power
consumption and cloud infrastructure costs, net annual savings
range from Rs. 3,200–3,400 per room, indicating payback
periods of 30–36 months under these operating assumptions.

For a 50-room campus, the total initial investment of
about Rs. 3.7 lakh is recovered within three years, yielding
cumulative savings exceeding Rs. 17 lakh over a ten-year
operational period.

C. Sensitivity Analysis

The ROI is sensitive to several parameters. Table 1 presents
sensitivity analysis:

Insights: Pessimistic (25%, Rs. 9/kWh) maintains ¡4yr
payback. High-use facilities achieve faster payback. Rising
tariffs improve ROI (5%/yr India).

D. Comparison with Alternative Solutions

Thermal: 15,000–25,000, 40% savings, 3,100/yr,
4.8–8.1yr payback. RoomIQ 50–70% faster despite marginally
lower savings. PIR: 2,000–3,000, 15%, 1,200/yr, 1.7–2.5yr.
Faster payback but insufficient savings, poor UX (false
shutdowns). Scheduled: 1,500, 10%, 800/yr, 1.9yr. Cheapest
but inflexible. BMS: 20,000–40,000, 45%, 3,500/yr,
5.7–11.4yr. Highest savings but prohibitive cost. RoomIQ
occupies optimal cost-savings-usability point: 38% savings,
7,680 cost, 2.6yr payback.



TABLE V
SENSITIVITY ANALYSIS OF RETURN ON INVESTMENT (ROI) PARAMETERS

Parameter Base Case Pessimistic Case Optimistic Case Impact on Payback Period

Energy Savings 38% 25% 50% Pessimistic: 2.59 → 3.92 years
Optimistic: 2.59 → 1.95 years

Electricity Tariff Rs. 10.81/kWh Rs. 8.00/kWh Rs. 14.00/kWh Pessimistic: 2.59 → 3.50 years
Optimistic: 2.59 → 1.94 years

Initial Cost Rs. 7,680 Rs. 9,000 Rs. 6,500 Pessimistic: 2.59 → 3.04 years
Optimistic: 2.59 → 2.19 years

Occupancy Rate 60% 40% 75% Pessimistic: 2.59 → 3.35 years
Optimistic: 2.59 → 2.25 years

VII. IMPLEMENTATION CHALLENGES AND SYSTEM
LIMITATIONS

A. System Assumptions and Deployment Prerequisites

Deployment Prerequisites: Physical—Ceiling-mounted
cameras (fixed orientation), continuous AC power (no battery),
periodic network connectivity, controlled access (tamper
prevention). Operational—Cooperative users (appropriate
overrides, failure reporting), typical educational patterns
(40–60% unoccupied), minimal environmental changes
(reconfiguration requires recalibration). Regulatory—Privacy
mode satisfies stakeholders/legal requirements, IT support
available (networking, Linux). Institutions must assess
assumption validity pre-deployment.

B. Technical Challenges

FOV Limits: Single camera occlusion from
furniture/columns. Large halls (¿100 seats) need multiple
cameras (+2,000–3,000/room). Prototype: ¿95% coverage
(40-seat, front-corner, 2.5m, 30° tilt). Low-Light: 95%→85%
accuracy (¡100 lux). Mitigations: IR illumination (+500),
low-light camera (+600), PIR+vision hybrid. Network:
Edge autonomy handles short outages; ¿24hr prevents
config/telemetry. Unreliable WiFi needs Ethernet (+300/room).
Latency: 9–11 FPS sufficient for occupancy, limiting
for gestures. Pi 5/Coral TPU (+3,500) enables 30 FPS.
Calibration: 50-room campus 25hr technician time. Future:
cloud wizards, AR tools.

C. Privacy and Ethical Concerns

Student Consent: Camera presence ethically sensitive
despite privacy-first mode. May impact participation.
Institutions must balance savings vs. well-being, potentially
exempt sensitive rooms (counseling, prayer). Data Misuse:
Security-integrated video risks non-energy use (behavior
monitoring, surveillance). Requires governance (ethical
boards, agreements, audits). Open-source transparency aids
oversight; institutional administrators responsible. Detection
Bias: YOLOv8 training data may underrepresent certain
demographics. Institutions should conduct bias audits and
consider local fine-tuning where appropriate.

D. User Acceptance and Adoption

Faculty Buy-In: May resist perceived control loss or
failures. Improve via manual overrides (switches, app),
pilot demonstrations, feedback-driven tuning. Student
Privacy: Camera objections despite privacy-first. Build
trust via transparent communication (signage, orientation),
opt-out provisions, student representation. Maintenance: IoT
intimidating vs. simple switches. Reduce friction via 24/7
support, troubleshooting guides, fail-safe modes (revert to
”always on”).

E. System Limitations

No HVAC Zoning: Centralized systems (common
in India) cannot zone room-level. On/off only, limits
HVAC-dominated buildings (lighting/fans still significant).
Appliance Compatibility: Relay switching for on/off only.
Variable-speed, dimmable, proprietary protocols (Zigbee,
Z-Wave) need interfacing (+500–1,500/room). Future: smart
home protocol integration. Weather-Dependent: Seasonal
variation. Monsoons reduce lighting savings. Extreme heat
may require HVAC overrides. Validate across full cycles.
Scalability: Django+PostgreSQL scales to 500 rooms before
degradation. Larger needs sharding/InfluxDB. Dashboard
¡100 users; larger needs caching/CDN.

VIII. FUTURE SCOPE AND EXTENSIONS

A. Advanced Features

Predictive Occupancy: Reactive→predictive (LSTM,
Transformer on historical patterns) anticipates 15–30min
ahead for pre-cooling/lighting, maintains efficiency. LMS
integration provides training ground truth. Demand Response:
Modulate non-critical loads at peak (20% fan reduction
2–4PM), unlocks revenue (utility compensation), supports
grid stability. Future: OpenADR protocol. Gesture Override:
Hand-wave control (intuitive vs. app/switch). Needs 30
FPS, MediaPipe, hardware acceleration (Coral TPU). Voice
Control: Google Assistant/Alexa integration. Needs cloud
API, voice-activated nodes (+1,500/room).

B. Hardware Enhancements

Thermal Hybrid: RGB (day) + thermal (night/low-light)
for reliability. Single-board integration could reduce premium



to 2× vs. 5–10×. Energy Harvesting: Solar (20W panel
1,500, 5Ah battery 1,000) eliminates wired power for remote
buildings. Monsoon reliability challenge. HVAC Zoning
Retrofit: Motorized dampers (2,000–4,000/zone) enable
room-level zoning, 20–30% additional savings. Air Quality:
PM2.5, CO, VOC sensors (+2,000/room) enable ventilation
control, post-pandemic relevance, optimize fresh air intake.

C. Software and Analytics Enhancements

Anomaly Detection: ML on historical telemetry
detects malfunctions (abnormal power), intrusions
(nighttime occupancy). Automated alerts for proactive
maintenance/security. Carbon Dashboard: Energy→CO
conversion (regional factors), visualize impact, motivate
engagement, support reporting (LEED, CDP). Multi-Campus
Analytics: Benchmark performance, identify best practices,
gamify conservation (leaderboards, challenges), leverage
behavioral economics. Third-Party API: REST API enables
dashboard, billing, research integration. Fosters ecosystem
(e.g., room availability apps).

D. Deployment Extensions

Residential Halls: High consumption (24/7), amenable
patterns. Heightened privacy concerns require consent
frameworks, possibly common-area cameras only (corridors,
lounges). Commercial: Offices, retail, hospitality face similar
waste. Minor adaptations (desk-level detection, checkout
monitoring). Smart Cities: Libraries, halls, government
offices for savings + occupancy analytics (space utilization).
Needs multi-tenancy, public dashboards. Developing Regions:
Cost profile suits Sub-Saharan Africa, Southeast Asia, Latin
America (high energy costs, constrained budgets). Localized
versions (multilingual, climate models), development agency
partnerships (World Bank, ADB) accelerate adoption.

E. Reinforcement Learning for Adaptive Control (Future
Work)

Current: rule-based (fixed thresholds). Future: RL
for institution-specific patterns. Offline simulation only
(Q-learning, 60-day data, not real-time): suggests 4–5%
additional reduction. Deployment gaps: Safety, convergence,
generalization, trust unaddressed. Explicitly excluded from
contribution, deferred to future dedicated validation.

IX. CONCLUSION

RoomIQ achieves effective energy automation
within budget/privacy constraints via architectural
design—decentralized edge autonomy, configurable
privacy, smart zoning—providing practical deployment
for resource-constrained regions. Prototype-level validation
demonstrates feasibility and order-of-magnitude savings.

Broader contribution is methodological: addressing
multi-dimensional constraints through architectural
composition of existing techniques vs. algorithmic
novelty. Framework generalizable to other privacy-sensitive,
budget-constrained automation domains.

Future: multi-site, seasonal, long-term validation required
for production readiness. Architectural principles and
trade-space analysis provide foundation for practical IoT
automation in underserved contexts.
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